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Abstract– A new method, based on numerical inversion of

the Laplace transform, is presented for the analysis of lossy

coupled transmission lines with arbitrary linear terminal

and interconnecting net works. The method is more reliable

and efficient than previously published techniques based on

the fast Fourier transform.

I. INTRODUCTION

Evaluation of the time domain response of multiconduc-

tor transmission lines is of great importance in the char-

acterization of high speed interconnections frequently en-

countered in the design of digital computers and commu-

nication systems. Improperly designed interconnects can

result in increased signal delay because of losses, inadver-

tent switching and noise because of crosstalk, false switching

and ringing due to reflect ions[l, 2]. This phenomena can be

observed at both the chip and system levels where the inter-

connected blocks can be analog, digital or a combination of

both. With subnanosecond rise times, the electrical length

of interconnects can become a significant fraction of a wave-

length. Consequently the conventional lumped-impedance

int erconneet model is not adequate in this case. Instead, a

distributed transmission line model should be used.

Several techniques have been proposed in the literature

for the analysis of coupled microstrip lines[3, 4, 5, 6]. The

common met hod[6] for analyzing the time domain response

of a lossy multiconductor transmission line terminated by

an arbitrary linear network is based on separate formula-

tion for the equations describing the transmission lines and

the equations describing the terminal and interconnecting

networks. These equations are combined at the analysis

stage. The analysis is performed in the frequency domain

at a set of discrete frequencies. Time domain waveforms are

obtained using the inverse fast Fourier transform. Thk ap-

proach has a major difficulty when the analysis has to span

a time interval of several line transient times. For example

the response of a lossless line with short-circuited ports is of

infinite duration. Consequently, it is impossible in this case

to compute the response using FFT. Even for moderately

lossy lines, the duration of the response exceeds many tran-

sit times of the transmission line network. This makes the

use of inverse FFT techniques inefficient as a large number

of points must be added to the analysis to avoid aliasing

problems. An important application in which such situa-

tions arise is the analysis of lossy multiconductor transmis-

sion lines with arbitrary nonlinear terminations [7, 8]. In

addition, the absence of a simple error criterion for the in-

verse FFT makes it difficult to establish confidence in the

results obtained in this case.

A new method for analyzing the time domain response

of linear transmission line networks is presented. This new

method, based on the modified nodal admittance(MNA)

matrix[9], unifies the formulation of the network equations

including the coupled transmission lines, terminal and inter-

connecting networks. The method uses numerical inversion

of the Laplace transform as an alternative to the FFT1 to

obtain the time domain solutions. In the following sections,

the advantages of the proposed technique are discussed.

II. FORMULATION OF THE NETWORK

EQUATIONS

The formulation of the network equations is based on

the modified nodal admittance matrix. Each multiterminal

component in the linear network has a “stamp” which de-

fines the corresponding entries in the MNA matrix. These

entries relate the current and voltage transforms at termi-

nals of the linear component. Details of the MNA formula-

tion and examples of the stamps for linear components can

be found in [10, 9].

The MNA stamp for the lossy multiconductor trans-

mission line is an admittance representation in the form

[Y][V] = [1], where [Y] is a matrix of admittance param-
eters, [V] is the matrix of terminal voltages and [1] is the

matrix of terminal currents. The stamp is developed as-

suming a transmission line uniform along its length with an

arbitrary cross section. The cross section, with N signal

conductors and a reference, can be represented by the fol-

lowing N x N matrices of line parameters: the inductance

per unit length [L], the resistance per unit length [R], the

capacitance per unit length [B], and the conductance per
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unit length [G]. The MNA stamp for the Iossy multicon-

ductor transmission line can be shown to be[ll]

S;EI S;l S; E2S;1
[y] = [ S,&S;l S,.E,S;’ 1 (1)

where [El] and [Ez] are diagonal matrices

{

exp(–2-@) + 1
[El] = diagonal ~ _ exp(_27~D), m = 1, N

}

[Ez] = diagonal
{

2
,m=l, N

exp(–y~D) – exp(~#) }

D is the line length, ~~ and [Sv] are the eigenvalues and

eigenvectors of the wave equation

det {~~[f.f] – [ZP][YP]} = O (2)

and

[Z,] = [R]+ s[L], [L] = [G]+ S[c] (3)

[S,] = [Zp]-’[sv][rl (4)

[U] is an identity matrix and [17] is a diagonal matrix {T,, -y,,

}. ..>7N .
Using the MNA stamp for the 10SSY coupled transmis-

sion line and the stamps for all of the other components of

the network a MNA formulation [Y(s) ][V(S)] = [1(s)] repre-

senting the network in the Laplace domain is obtained. The

frequency response of the network is obtained with s = j w.

The time domain response is obtained directly using numer-

ical inversion of the Laplace transform as described in the

next section.

III. COMPUTATION OF TIME DOMAIN

RESPONSE USING NUMERICAL

INVERSION OF THE LAPLACE

TRANSFORM

The method for numerical inversion of the Laplace trans-

form is described in [10, 12]. The method involves the com-

putation of the frequency domain function at preassigned

complex points and forming a weighted sum. It exactly

inverts a certain number of terms of the Taylor series ex-

pansion of the time response and is thus equivalent to the

met hods used for the int egrat ion of differential equations.

It has been shown that the method is absolutely stable and

that the equivalent order of integration can be changed be-

tween 1 and 46 without affecting the stability properties.

Given a Laplace domain MNA representation for a net-

work containing lossy multiconductor transmission lines,

[Y(s)] [V(S)] = [1(s)] where [V(s)] is the circuit response,

the time domain response is calculated using numerical in-

version of the Laplace transform as

[O(t)] = -(l/t)fRe ~K~[Y(Zi/t)]-’[I(.ZJ/t)]] (.5)
4=1 -

The response [o(t)] at each time point is obtained from the

W solutions to the network equation [Y(s) ]-l [1(s)] evalu-

ated at the complex frequencies s = .zJt.Values for K: and

Zi vary with M’, the order of the approximation, and are

available in tables [l O].

Several points of interest should be mentioned when com-

paring (5) with inverse FFT methods. First, the numerical

inversion of the Laplace transform does not suffer from alias-

ing effects. Second, the number of frequency points defined

by A& < 15 is usually much less than the number of fre-

quency points required by the inverse FFT algorithm for

the same accuracy in the output waveforms. This leads to

considerable savings in the CPU requirements. Third, from

(5), it is obvious that the solution at time t is completely in-

dependent of solutions at all other time points. If the circuit

response for time to is all that is required this response can

be calculated efficiently without calculating the response for

any other values of time. Using inverse FFT techniques the

entire waveform must be calculated.

IV. EXAMPLES

To illustrate the advantage of the proposed approach

consider the case of a single losslem transmission line(Fig. 1)

with an ideal input source at one end and a zero termination

at the other end. The total inductance L and capacitance

C are assumed to be L = C = 1. This is a simple circuit

which may be solved directly. For a step input the close&

form solution for the current into the transmission line at

time t is

[111 + e-2S 2 - sin(nnt)
i.(t) .z-l ;- =t+–~— (6)

T ~=~ n

where Z–* denotes inverse Laplace transform. For an input

pulse of duration A, the current into the transmission line

is given by

iP(t) = ~s(t) – i.(t– A) (7)

Obviously, the conductor’s current is of infinite time-duration.

Consequently, it is impossible to compute the current wave-

forms using inverse Fourier transform techniques. Using the

proposed algorithm of numerical inversion of the Laplace

transform current waveforms for this circuit can be com-

puted. The results are compared with the closec-form solu-

tion in Figure 2.

A more complex example circuit is shown in Fig. 3. Us-

ing the method described in [6] this circuit would be divided

into two transmission lines and a terminating network. The

proposed MNA formulation uses a single matrix equation to

represent the entire circuit.

It is impossible to match the transmission lima at all the

terminal locations in the network of Fig. 3. The mismatches

between the transmission lines and the terminal networks re-

sult in long transient periods. If FFT was used it would not

be possible to obtain the section of response shown in Fig. 4

independent of the rest of the response. FFT requires t~at

the analysis span a time interval over which

vanish.

all transients
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V. SUMMARY

A Laplace-domain modified nodal analysis method for

calculating the time-domain response of a network contain-

ing lossy coupled transmission lines was described. The for-

mulation of the network equations is based on a Laplace-

domain admittance “stamp” for the transmission line. The

transmission line stamp can be used to formulate equations

representing arbitrarily complex networks of transmission

lines and interconnect. These equations can be solved with

s = jw to get the frequency-domain response of the network.

Numerical inversion of the Laplace transform allows the

time-domain response to be calculated directly from Laplace-

domain equations. This method is an alternative to cal-

culating the frequency-domain response and using FFT to

obtain the time-domain response. The inversion technique

is equivalent to high order, numerically stable int egrat ion

methods. With numerical inversion, points in the time-

domain response can be calculated independently from each

other. This independence can be exploited when the entire

time response is not required.

The proposed technique is particularly useful compared

to the FFT approach in cases where the response of the line

exceeds many transit times. The time-domain independence

of the solution was exploited by an efficient calculation of

the propagation delay of the network. In addition, the nu-

merical inversion method can efficiently be used to calculate

the initial transients in a mismatched coupled system where

reflections result in very long response times.
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Figure 1: A lossless transmission line with ideal input source

and zero termination.
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Figure 2: Shorted lossless transmission line: (a) Step Re-

sponse, (b) Pulse Response
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Figure 3: Two multiconductor transmission lines with ter-

minal net works.

Signals in the Example Network
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Figure 4: Response of the circuit shown in Fig. 3 computed using numerical inversion of the Laplace

transform. The input V= is shown as waveform VI.
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