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Abstract— A new method, based on numerical inversion of
the Laplace transform, is presented for the analysis of lossy
coupled fransmission lines with arbitrary linear terminal
and interconnecting networks. The method is more reliable
and efficient than previously published techniques based on
the fast Fourier transform.

I. INTRODUCTION

Evaluation of the time domain response of multiconduc-
tor transmission lines is of great importance in the char-
acterization of high speed interconnections frequently en-
countered in the design of digital computers and commu-
nication systems. Improperly designed interconnects can
result in increased signal delay because of losses, inadver-
tent switching and noise because of crosstalk, false switching
and ringing due to reflections[1, 2]. This phenomena can be
observed at both the chip and system levels where the inter-
connected blocks can be analog, digital or a combination of
both. With subnanosecond rise times, the electrical length
of interconnects can become a significant fraction of a wave-
length. Consequently the conventional lumped-impedance
interconnect model is not adequate in this case. Instead, a
distributed transmission line model should be used.

Several techniques have been proposed in the literature
for the analysis of coupled microstrip lines[3, 4, 5, 6]. The
common method[6] for analyzing the time domain response
of a lossy multiconductor transmission line terminated by
an arbitrary linear network is based on separate formula-
tion for the equations describing the transmission lines and
the equations describing the terminal and interconnecting
networks. These equations are combined at the analysis
stage. The analysis is performed in the frequency domain
at a set of discrete frequencies. Time domain waveforms are
obtained using the inverse fast Fourier transform. This ap-
proach has a major difficulty when the analysis has to span
a time interval of several line transient times. For example
the response of a lossless line with short-circuited ports is of
infinite duration. Consequently, it is impossible in this case
to compute the response using FFT. Even for moderately
lossy lines, the duration of the response exceeds many tran-
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sit times of the transmission line network. This makes the
use of inverse FF'T techniques inefficient as a large number
of points must be added to the analysis to avoid aliasing
problems. An important application in which such situa-
tions arise is the analysis of lossy multiconductor transmis-
sion lines with arbitrary nonlinear terminations [7, 8]. In
addition, the absence of a simple error criterion for the in-
verse FFT makes it difficult to establish confidence in the
results obtained in this case.

A new method for analyzing the time domain response
of linear transmission line networks is presented. This new
method, based on the modified nodal admittance(MNA)
matrix[9], unifies the formulation of the network equations
including the coupled transmission lines, terminal and inter-

connecting networks. The method uses numerical inversion
of the Laplace transform as an alternative to the FFT" to
obtain the time domain solutions. In the following sections,
the advantages of the proposed technique are discussed.

II. FORMULATION OF THE NETWORK
EQUATIONS

The formulation of the network equations is based on
the modified nodal admittance matrix. Each multiterminal
component in the linear network has a “stamp” which de-
fines the corresponding entries in the MNA matrix. These
entries relate the current and voltage transforms at termi-
nals of the linear component. Details of the MNA formula-
tion and examples of the stamps for linear components can
be found in [10, 9].

The MNA stamp for the lossy multiconductor trans-
mission line is an admittance representation in the form
[Y1[V] = [I], where [Y] is a matrix of admittance param-
eters, [V] is the matrix of terminal voltages and [I] is the
matrix of terminal currents. The stamp is developed as-
suming a transmission line uniform along its length with an
arbitrary cross section. The cross section, with N signal
conductors and a reference, can be represented by the fol-
lowing N x N matrices of line parameters: the inductance
per unit length [L], the resistance per unit length [R], the
capacitance per unit length {B], and the conductance per
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unit length [G]. The MNA stamp for the lossy multicon-
ductor transmission line can be shown to be[11]

V1= S;E1S; SiE,S;t

[ ] - S1E25v_1 S,E15;1
where [E4] and [E,] are diagonal matrices
exp(=29D) + 1
1 — exp(~2y,D)

2

exp(—vm D) — exp(ymD)

D is the line length, 42, and [S,] are the eigenvalues and
eigenvectors of the wave equation

(1)

[£4] diagonal{ , M = I,N}

(B, = diagonal{ ,m:l,N}

det {7 [U] - [Z][V;]} = 0 (2)
and
[Z,] = [R] +s[L), [Yy] =[G]+s[C] ®3)
[S.] =217 [S.]IT] ()
[U]is an identity matrix and [['] is a diagonal matrix {7, 72,
ey YN -

Using the MNA stamp for the lossy coupled transmis-
sion line and the stamps for all of the other components of
the network a MNA formulation [Y'(s)][V(s)] = [I(s)] repre-
senting the network in the Laplace domain is obtained. The
frequency response of the network is obtained with s = jw.
The time domain response is obtained directly using numer-
ical inversion of the Laplace transform as described in the
next section.

II1I. COMPUTATION OF TIME DOMAIN
RESPONSE USING NUMERICAL
INVERSION OF THE LAPLACE

TRANSFORM

The method for numerical inversion of the Laplace trans-
form is described in {10, 12]. The method involves the com-
putation of the frequency domain function at preassigned
complex points and forming a weighted sum. It exactly
inverts a certain number of terms of the Taylor series ex-
pansion of the time response and is thus equivalent to the
methods used for the integration of differential equations.
It has been shown that the method is absolutely stable and
that the equivalent order of integration can be changed be-
tween 1 and 46 without affecting the stability properties.

Given a Laplace domain MNA representation for a net-
work containing lossy multiconductor transmission lines,
[Y()V(s)] = [I(s)] where [V(s)] is the circuit response,
the time domain response is calculated using numerical in-
version of the Laplace transform as

MI
[6(0)] = —(1/2) gRe [KIY /) (/1)) (5)

The response [#(¢)] at each time point is obtained from the
M’ solutions to the network equation [Y(s)]"*[I(s)] evalu-
ated at the complex frequencies s = z;/t. Values for K/ and
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z; vary with M’, the order of the approximation, and are
available in tables[10].

Several points of interest should be mentioned when com-
paring (5) with inverse FFT methods. First, the numerical
inversion of the Laplace transform does not suffer from alias-
ing effects. Second, the number of frequency points defined
by M’ < 15 is usually much less than the number of fre-
quency points required by the inverse FFT algorithm for
the same accuracy in the output waveforms. This leads to
considerable savings in the CPU requirements. Third, from
(5), it is obvious that the solution at time ¢ is completely in-
dependent of solutions at all other time points. If the circuit
response for time ¢, is all that is required this response can
be calculated efficiently without calculating the response for
any other values of time. Using inverse FFT techniques the
entire waveform must be calculated.

IV. EXAMPLES

To illustrate the advantage of the proposed approach
consider the case of a single lossless transmission line(Fig. 1)
with an ideal input source at one end and a zero termination
at the other end. The total inductance L and capacitance
C' are assumed to be L = C = 1. This is a simple circuit
which may be solved directly. For a step input the closed-
form solution for the current into the transmission line at
time t is

. S |114e?] 2 & sin(nrt)
Wt =L [‘1_—} sttty O

n=1

where £ denotes inverse Laplace transform. For an input
pulse of duration A, the current into the transmission line

is given by
ip(t) = 45(t) — i,(t — A) (7)

Obviously, the conductor’s current is of infinite time-duration.
Consequently, it is impossible to compute the current wave-
forms using inverse Fourier transform techniques. Using the
proposed algorithm of numerical inversion of the Laplace
transform current waveforms for this circuit can be com-
puted. The results are compared with the closed-form solu-
tion in Figure 2.

A more complex example circuit is shown in Fig. 3. Us-
ing the method described in [6] this circuit would be divided
into two transmission lines and a terminating network. The
proposed MNA formulation uses a single matrix equation to
represent the entire circuit.

It is impossible to match the transmission lines at all the
terminal locations in the network of Fig. 3. The mismatches
between the transmission lines and the terminal networks re-
sult in long transient periods. If FFT was used it would not
be possible to obtain the section of response shown in Fig. 4
independent of the rest of the response. FFT requires that
the analysis span a time interval over which all transients
vanish.



V. SUMMARY

A Laplace-domain modified nodal analysis method for
calculating the time-domain response of a network contain-
ing lossy coupled transmission lines was described. The for-
mulation of the network equations is based on a Laplace-
domain admittance “stamp” for the transmission line. The
transmission line stamp can be used to formulate equations
representing arbitrarily complex networks of transmission
lines and interconnect. These equations can be solved with
8 = jw to get the frequency-domain response of the network.

Numerical inversion of the Laplace transform allows the
time-domain response to be calculated directly from Laplace-
domain equations. This method is an alternative to cal-
culating the frequency-domain response and using FFT to
obtain the time-domain response. The inversion technique
is equivalent to high order, numerically stable integration
methods. With numerical inversion, points in the time-
domain response can be calculated independently from each
other. This independence can be exploited when the entire
time response is not required.

The proposed technique is particularly useful compared
to the FFT approach in cases where the response of the line
exceeds many transit times. The time-domain independence
of the solution was exploited by an efficient calculation of
the propagation delay of the network. In addition, the nu-
merical inversion method can efficiently be used to calculate
the initial transients in a mismatched coupled system where
reflections result in very long response times.
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Figure 1: A lossless transmission line with ideal input source
and zero termination.
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Figure 3: Two multiconductor transmission lines with ter-
minal networks.

Signals in the Example Network

Signal (volts)

0 0.5 1 1.5 2 2.5
Time (seconds) x10-8

Figure 4: Response of the circuit shown in Fig. 3 computed using numerical inversion of the Laplace
transform. The input V, is shown as waveform V1.
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